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LIQUID CRYSTALS, 1987, VOL. 2, No. 1, 3-19 

The effect of compression on the Frank constants of 
two nematic liquid crystals 

by P. L. SHERRELL, J. D. BUNNING and T. E. FABER 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, England 

(Received 11 October 1985; accepted 30 August 1986) 

Along lines in the phase diagram of a nematic liquid crystal on which its order 
parameter (i.e. the degree of alignment of its molecules) is constant, the Frank 
stiffness constants are expected to increase with pressure. We have sought evidence 
for this by studying, using an orthodox optical method, a magnetic FrCedericksz 
transition in thin films of two alkyl cyanobiphenyl compounds inside pressure 
vessels; our measurements on 5CB extended to 2 kbar and on 6CB to 0.5 kbar. To 
analyse our data we need to know, though not with great precision, the ordinary 
refractive index of the nematic, no, for each pressure and temperature. We 
therefore made supplementary measurements of refractive index on 5CB and 6CB 
(and incidentally on 7CB and 8CB as well) at pressures up to 2.5 kbar. Given 
no we can deduce the extraordinary refractive index n, from our observations 
on the Freedericksz transition. Hence we can deduce values for the quantity 
X(= 3(n: - nt)/(na + 2n: - 3)), which we take to be proportional to the order 
parameter. As for the anisotropy in the magnetic susceptibility, which is also 
involved in the analysis, we make the assumption that along lines in the phase 
diagram for which Z is constant the anisotropy per unit mass, AX'"'', is constant 
too, despite the biaxiality effects which are known to prevent Az('")/Z from being 
quite independent of temperature at atmospheric pressure. Our results suggest that 
for 5CB the effect of compression on both the bend constant, K, ,  and the splay 
constant, K , ,  is about half as great as would be predicted by Maier-Saupe theory 
in its simplest form. Alternative theories which could be used to explain the 
difference are outlined in the final section, but we have no explanation for what we 
observe for 6CB, where the effect of compression seems to be significantly smaller 
still-too small, indeed, to be detected. 

1. Introduction 
Previous experiments on nematic liquid crystals under pressure (for example, [ 1-41 

have shown that the temperature T,,(p)  at which the nematic phase transforms to the 
isotropic increases rather rapidly on compression. In terms of the molar volume of the 
nematic, V,, one finds 

with an exponent y which, at any rate for the two nematics that concern us in this 
paper, is at  least 6. If we are to believe the mean field theory of Maier and Saupe [5], 
this volume-dependence arises from a volume-dependence of the strength of the 
anisotropic interaction potentials which are responsible for nematic alignment, and 
since these potentials determine not only T,, but also the three Frank stiffness 
constants K,  (i = 1, 2, 3) we should expect 

T N ,  v7, (1) 

K,  E VCy ( 2 )  
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4 P. L. Sherrell et al. 

along any line on the phase diagram on which the order parameter S, ,  which describes 
the degree of alignment in the nematic, is constant; such lines are known to run 
roughly parallel to the clearing curve itself, i.e. to the curve which describes T N , ( p ) .  
The very different continuum theory of nematic disorder developed by Faber [6] leads 
to a similar prediction. This paper describes a first attempt to verify it, using the 
nematic compounds 4-n-pentyl-4’-cyanobiphenyl, or 5CB, and its hexyl homologue 
6CB. 

In planning the experiments we looked for a method which could be applied inside 
a pressure vessel and which could, in principle, yield results with a relative accuracy 
of 1 per cent. We decided in favour of the method adopted by Karat and Mad- 
husudana [7] and others, which involves using optical techniques to monitor a 
Frkedericksz transition in a thin layer of nematic with homeotropic (normal) align- 
ment, when a magnetic field is applied parallel to the layer. The bend constant K3 is 
related to the critical field B,, at which the transition starts by the equation 

Bo = (7c/L)(PO~3/47cAXY’* (3 )  
and from observations at higher fields a quantity K (= (K3  - K l ) / K 3 )  and hence the 
splay constant K ,  can be deduced. The successful application of this method in our 
laboratory to various nematics at atmospheric pressure, including 5CB and 6CB, has 
been described in two previous papers [8,9]. 

The theoretical expressions which relate the quantity which is measured in this 
method (a difference in optical path for the two principal polarizations) to the 
strength of the applied field, B, include not only the parameters B, and K ,  but also the 
thickness of the nematic layer, L, its ordinary refractive index no and the quantity 
v = (n: - n:)/n;. When the work was first planned we expected to be able to treat 
L, no and v as known for all values of pressure, p ,  and temperature T, since we felt 
that we could rely on the detailed refractive index data reported by Horn [ 2 ] .  Subse- 
quently it became clear that Horn’s pressure gauge was affected by a temperature 
dependent zero error [4], more than large enough to obscure the small effects for 
which we were looking. We therefore developed a fitting procedure which enables v 
to be estimated from each set of observations at the same time as Bo and K are 
estimated, and the use of this procedure at atmospheric pressure to provide a check 
on the assumptions concerning L has been described in [8]. We still need to know no 
as a function of pressure and temperature, of course, so one of us (J. D. B.) set up an 
independent experiment to measure this. His method is briefly described in $2 of this 
paper, and his results briefly summarized in $3. In most contexts the results, because 
of unresolved experimental difficulties, would no doubt seem inadequate, but for our 
purposes they prove sufficient. Our conclusions are insensitive to the choice of no. 

We cannot hope to deduce how K3 and K ,  vary with volume at constant S,  unless 
we have some way of estimating relative values of VN and S, for each set of readings. 
We shall follow Horn and Faber [lo] in assuming these quantities to be proportional 
respectively to 

SZ = (nt + 2n: + 6)/(n,’ + 2n: - 3)  = ((1 - 2 ~ / 3 ) n :  + 2)/((1 - 2 ~ / 3 ) n :  - 1) 

(4) 

C = 3(n: - n:)/(n: + 2n: - 3) = vn:/((l - 2v/3)n: - 1 ) .  ( 5 )  

and to 

Evidently SZ and C can both be deduced from v and no. The proportionality of S ,  to 
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Effect of compression on Frank constants 5 

Z has been discussed by Bunning et al. [ll].  It is clearly not exact, because of local 
field effects and the influence of off-diagonal elements in the Saupe ordering matrix. 
According to Bunning et al., however, the corrections needed for these effects are too 
small to be significant here. 

Bunning et al. have also discussed the anisotropy in the magnetic susceptibility of 
the nematic, Ax, which plays a role in equation (3). They conclude that the off-diagonal 
e!ements referred to have an appreciable effect upon it, so that 

and hence 

where x("') is the susceptibility per unit mass, b is a biaxiality ratio defined in the 
Appendix, and a is a numerical coefficient of order unity. It is known that b varies with 
temperature at constant pressure, but we argue in the Appendix that at constant S, 
its variation with volume is likely to be negligible. If so, we may assume that along 
lines in the phase diagram for which Z, and therefore S,, is constant K3 varies like 
(L2B,'/R). Since the variation of L is likely to be negligiblethe effect of pressure on 
the spacers that determine L is small and in any case is roughly compensated by their 
thermal expansion-we may display our results by plotting (B,'/R) versus C. The effect 
we are looking for should show up on such a plot as a separation between curves 
obtained in successive runs, for each of which T was varied while p was held more or 
less fixed, but between which p was increased. 

For 5CB we see such a separation (see $4), but it is only about half as much as that 
predicted; for 6CB it seems wholly absent. In $5 of this paper we recall modifications 
to the theories mentioned previously which may perhaps serve to explain what we 
have observed for 5CB, but our negative result for 6CB remains distinctly curious. 
For one referee who saw an earlier draft of this paper it is so curious as to cast doubt 
upon our data or upon the assumptions which have been outlined in this Introduc- 
tion. The data are admittedly incomplete, because our experimental programme was 
twice interrupted when Drs. Sherrell and Bunning left to work elsewhere. They seem 
to us reliable as far as they go, however, and having reached the same negative result 
for 6CB by another method of analysis, involving a different set of assumptions, we 
have confidence in it. Nevertheless confirmation from further experiments is undoubtedly 
desirable. 

The way in which X and R (i.e. S, and VN) vary with pressure and temperature for 
nematics is a topic of some interest in its own right. Such information concerning their 
variation as can be deduced from our observations will be found in $2. Brief references 
will be found in that section to two further homologues of 5CB, namely 7CB and 8CB, 
on which refractive index measurements were made, though shortage of time prevented 
their use in the Freedericksz transition work. 

2. Experimental details 
The pressure vessels used in this work were cylinders about 8 cm long and about 

8 cm in external diameter, enclosed by heating coils so that their temperature could 
be raised by 100°C or more. Temperature was measured by means of chromel-alumel 
thermocouples with one junction in the interior of the vessel, surrounded by the 
nematic specimen. Pressure was generated in a separate intensifier, filled with a 
silicone fluid, and measured with manganin gauges kept at room temperature. The 
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6 P. L. Sherrell et af. 

gauges were calibrated against secondary standard gauges and were also compared 
with the gauge used by Wallis and Roy [4]. In principle they were accurate to 
k0.01 kbar or less, but zero errors exceeding 0.01 kbar may have crept into the 
readings sometimes, for example, when the room temperature changed, as we shall see 
later. The pressure was transmitted from the intensifier to the specimen through 
Harwood tubing filled with the silicone fluid and then through metal bellows; a 
preliminary experiment shows the pressure drop across the bellows to be negligible. 
The pressure-proof seals which were an essential feature of the vessels were of 
conventional design and will not be described here. 

The vessel used for observations on the Freedericksz transition in 6CB (by J. D. B.) 
was of non-magnetic stainless steel and had a working chamber, bored out along the 
axis of the cylinder, with a diameter of about 17mm. The tube from the intensifier 
entered through a plug at one end of the cylinder and the bellows were inside the 
working chamber. The plug at the other end had a hole bored along its axis to allow 
a He-Ne laser beam to enter the chamber and to emerge again after reflection. An 
optically flat glass window about 6 mm thick was seated on the flat and polished end 
of this plug, and the inner face of the window formed one of the surfaces containing 
the thin layer of nematic on which observations were made. The other containing 
surface was provided by a glass cover slip, aluminized on its other side, which was 
pushed towards the window by a loose spring but prevented from touching it by 
spacers of tungsten wire with a diameter of about 50pm. The compressibility and 
thermal expansion of tungsten are such that changes in the thickness L of the nematic 
layer should not have exceeded a few parts in lo4 over the relevant ranges of p and 
T. The two containing surfaces were treated with surfactant before assembly to ensure 
homeotropic alignment of the nematic layer. After assembly, which involved filling 
with nematic liquid the whole of the working space on one side of the bellows, the 
vessel was set up between the poles of an electromagnet, which could provide fields 
parallel to the layer of up to 0.3 T, and the Freedericksz transition was monitored in 
the way that Bunning et uf. [8] have described. The apparatus used for 5CB (by 
P. L. S.) was not identical but it differed in no essential particular. 

The vessel designed (by J. D. B.) for refractive index measurements was of beryllium/ 
copper and had a working chamber with a diameter of about 14 mm. A He-Ne laser 
beam entered the chamber through a window, as with the steel vessels, but instead of 
being reflected it was allowed to carry on and exit from the other end of the vessel 
through a second window. The brass bellows were now in a detached separator unit, 
filled on one side with the silicone fluid and on the other with the nematic specimen; 
the nematic in the separator communicated directly with the nematic in the working 
chamber via a narrow hole drilled at right angles to the main axis of the pressure 
vessel. 

The face of the plug on which the exit window was set was angled in such a way 
that this window was inclined to the entry window at about 5". Silicone monoxide was 
evaporated on both windows before assembly, at an angle of 60" to the normal, so as 
to promote homogeneous planar alignment of the wedge of nematic between them, 
and a magnetic field could be used to improve the alignment if necessary. The wedge 
was therefore birefringent, and by measuring the deviations of the ordinary and 
extraordinary rays, using a laser beam polarized at 45" to the principal directions, the 
two principal refractive indices of the nematic, no and n,, could be found. The hole 
through the exit plug was made conical to allow deviated beams to emerge. The 
deviations were measured on a graduated scale about 7.5 m from the wedge. Before 
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EfSect of compression on Frank constants 7 

and (except in cases where leakage prevented this) after each set of measurements at 
high pressure they were measured as a function of temperature at atmospheric 
pressure; from a comparison with the results of previous determinations of no and n, 
at atmospheric pressure [l 13 the wedge angle could be deduced. 

Both types of experiment were conducted by setting the pressure to a more or 
less fixed value and then varying the temperature. Such a procedure is more time 
consuming than the alternative adopted in previous work [4,10] of setting the tem- 
perature and varying the pressure: the large thermal capacity of the pressure vessels 
slows down the process of temperature adjustment. It reduces the risk of failure 
due to leakage, however, and it generates results that are easier to present in meaning- 
ful form. At each setting of the pressure p the temperature T N l ( p )  of the transition to 
the isotropic phase was normally determined, so the results could be plotted against 
(TNI(p) - T )  as is customary at atmospheric pressure. The clearing temperature at 
atmospheric pressure, TNl(0), was liable to be lower at the end of a high pressure run 
than at  the beginning by about 0.2"C, perhaps due to chemical changes in the 
specimen, and TNI(p) for nominally fixed p was not wholly reproducible for different 
specimens, perhaps because of zero errors in the pressure gauges. But changes in TN, 
should be of relatively little importance if one concentrates upon the difference, 

The results presented later show that B, could be measured under pressure with 
an accuracy no less than that achieved at atmospheric pressure. The same cannot 
be said of the refractive indices. At atmospheric pressure the relative accuracy 
of values of no and n, obtained by the wedge technique is of order f0.0003, but 
under pressure errors as large as -t 0.01 sometimes occurred; this statement is based 
on a comparison of the results obtained for a single specimen at different pressures 
and for different specimens at a single pressure. The errors seemed usually to be 
systematic while the pressure remained unchanged but were not invariably so. Imper- 
fect alignment of the nematic was no doubt partly to blame, but changes in the wedge 
angle presumably due to displacement or distortion of the windows were also a 
serious problem. The fact that the measured value of the wedge angle was sometimes 
different before and after a run provided evidence for displacement. Evidence that 
elastic distortion occurred was provided by observations at pressures greater than 
about 2.5 kbar. Here the two spots of light on the graduated scale invariably became 
too diffuse for measurements to be possible, though they improved when the pressure 
was lowered again; since the single spot observed when the specimen was heated 
above T N I ( p )  was equally diffuse, the diffuseness could not be blamed upon poor 
alignment. 

The data for the Freedericksz transition which we present later were obtained at 
pressures not exceeding 2.1 kbar for 5CB, while for 6CB the maximum pressure used 
was only about 0.5 kbar. While it is possible that these pressures were sufficient to 
move the windows on the steel vessels, we presume that, if so, the cover slips moved 
with them. Had the thickness of the nematic layer between window and cover slip 
become significantly non-uniform under pressure the data would have been affected; 
for example, the transition curve would have developed a tail [8]. We saw no evidence 
of this. 

It should be said that although the 6CB transition data span a smaller pressure 
range than the 5CB data they are in some respects of superior quality, since between 
the two sets of measurements our methods for preparing well-aligned specimens 
improved. 

(TNI - 
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8 P. L. Sherrell et al. 

3. Experimental results: refractive indices, order parameter and volume 
3.1. The clearing curve 

Previous authors have found that the clearing curve for cyanobiphenyls may be 
described by the equation 

T N I ( p )  = TNI(o) + A p  - Bpz. (7) 

We have fitted this equation to our observations using the coefficients listed in the 
table, but it should be repeated that measurements of TNI(p) are not quite as 
reproducible as could be wished; an individual measurement may differ from the value 
corresponding to equation (7) by as much as 1 K at a pressure of 2 kbar. Within such 
limits our results are in satisfactory agreement with those reported by Wallis and Roy 
[4] for the same compounds. In particular, they confirm the results reported by Wallis 
and Roy for 7CB, rather than the somewhat different results of Shashidhar and 
Venkatesh [3]. 

Coefficients in equation (7). 

Mesogen TN,(O)/K AIK kbar-' BIK kbar-* 

5CB 308.7 39.0 1.2 
6CB 302.8 37.8 1.2 
7CB 3 16.0 34.5 0.45 
8CB 314.1 36.3 1.6 

From the coefficients in the table we deduce that T6'(dTN1/dp) is 0.126 kbar-l for 
5CB at low pressures, and 0.125 for 6CB. 

3.2.  Rejractive indices 
The refractive indices of 5CB were meamred using only one specimen, and this 

was a case in which the wedge angle changed slightly during the run. The run covered 
five values ofp, for each of which the results for no lay on a smooth curve when plotted 
against AT, where 

AT = (TNI(p)  - (8) 
In figure 1 we plot the values of no corresponding to AT = 5 K which are indicated 
by these curves, with error bars which reflect only the scatter in each set of readings. 
One way to interpret these results would be to fit some sort of curve through them and 
through the point at  p = 0 which represents the atmospheric pressure observations 
on which the wedge angle calibration is based. We prefer to believe, however, that no 
is a more or less linear function of p for fixed AT and to fit through the points the 
straight line which is drawn in figure 1, with a slope 

(dn,/dp)AT = 0.01 1 kbar-I. (9) 

We attribute the fact that this line does not pass through the point a t p  = 0 to a small 
change in wedge angle under pressure which relaxed when the pressure was released. 

The crosses in figure 1 represent our results for no at AT = 5 K in 6CB, of which 
three different specimens were investigated. The scatter is large and implies significant 
calibration errors in at least two of the runs, but the general trend of the points seems 
to be consistent with equation (9), as in 5CB. Similar plots for other values of ATshow 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
0
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



EfSect of compression on Frank constants 9 

Figure 1 .  Values of no at 1 = 632.8 nm and AT = 5 K observed for 5CB (circles) and 6CB 
(crosses) at different pressures. The filled and open circles represent results calculated 
using the wedge angle observed before and after, respectively, the 5CB specimen was 
subjected to pressure. 

no evidence of any temperature dependence of (dn,/dp)AT for 6CB, but for 5CB it 
seems to decrease slightly as AT increases. 

Measurements of n, are more likely to be affected by misalignment of the nematic 
director than are measurements of no, and perhaps that is why our n, results for 5CB 
are too erratic for us to be able to deduce a value of (dn,/dp)AT with conviction. But 
for 6CB (dn,/8p)AT seems to be 0.01 3 kbar-I, effectively independent of temperature. 
This figure is consistent with what may be inferred about n, from the data for v to be 
discussed later. 

Similar results are available for 7CB and 8CB, but they are not needed fbr the 
analysis that follows and do not seem worth quoting here. Such figures as we have 
quoted apply, of course, at  the He-Ne wavelength, A = 632.8 nm. 

3 .3 .  The order parameter 
From each set of observations on a Friedericksz transition at  given T and p we 

obtain, using a three-parameter computer fit which is explained in greater detail in [8], 
values for B,, K and v .  Here we are concerned only with the results for v, and with what 
may be deduced from them concerning the pressure dependence of I: (and hence of 
the order parameter &). 

It should first be explained that the values generated for v depend to some extent 
on the values assumed for no and L ,  which are necessary inputs for the computer 
program. It has been established, however, [8], that replacement of the true values for 
these quantities by slightly different values n: and L‘ changes the output of the 
program from v to v‘, where 

(n,L/n:L’) = ((1 - v’)”’* - 1)/((1 - v)-’’’ - 1). (10) 
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10 P. L. Sherrell et al. 

At atmospheric pressure, where n o ,  n, and v are known but where our estimate for the 
layer thickness-say L'-is initially a little uncertain, we use equation (10) to establish 
a correction factor, (L/L'). This turns out to be independent of temperature, as 
expected; for 6CB it was 1.015 and for 5CB it was 0.937, the difference reflecting a 
difference between the methods used by J. D. B. and P. L. S .  for the estimation of L'. 
At high pressures we use the same correction factor for the layer thickness, for reasons 
stated previously, and equation (lo) then enables us to establish v ,  from results for v' 
which were originally computed without allowance for this correction and using 
values for n: which we now believe to be erroneous. For no we use 

n o  (AT, p )  = no (AT,  O) + p(ano  l a p ) A T ,  (1 1) 

both for estimating v from v ' ,  and for calculating X from v with the aid of equation 
(5). The errors in our estimates of ( & ~ , / a p ) ~ ~  may be as much as 20 per cent (see 
figure 1) but the corresponding errors in v and C should not exceed 0.2 per cent, such 
is the insensitivity of v to the choice of no.  

It has been shown by Wallis and Roy [4], who measured proton N.M.R. line- 
widths under pressure, that S, is constant along the clearing curve for 6CB, and the 
refractive index measurements of J. D. B. confirm that C is likewise constant for this 
substance. For 5CB, however, S,  is clearly not constant along the clearing curve: it 
falls between atmospheric pressure and 2 kbar by about 10 per cent. This has been 
shown in different ways by both Horn and Faber [lo] and Wallis and Roy [4], and the 
refractive index measurements of J. D. B. again provide confirmation. They also 
confirm, incidentally, the similar fall along the clearing curve reported by Wallis and 
Roy [4] for 7CB and 8CB. 

Figure 2 shows our limited results for X in 6CB at three different pressures, plotted 
against A T .  The points for atmospheric pressure and for 0.5 kbar lie on much the same 
curve, but those for 0.2 kbar are well to the left of this curve. During the 0-2 kbar run, 
however, the zero on the pressure gauge drifted, and we have independent evidence 
that the true pressure had fallen to 0.17 kbar by the time that TN, was measured. 
Consequently we believe the recorded values for A T  for the early readings in this run 
to be too low by about 1 K. Corrected by that amount the points for 0.2 kbar would 
come into coincidence with the other two sets of points in figure 2. Hence it seems that, 
up to 0.5 kbar at any rate, the lines of constant S2 run closely parallel to the clearing 
curve for 6CB. 

Figure 3 is a similar plot of C versus A T  for 5CB. The data come from a sequence 
of runs on a single specimen. Other specimens gave similar results, but it would 
confuse the diagram if we tried to show these. The sets of points we have chosen to 
include in figure 3 display various irregularities, which may well be due to zero errors 
in the pressure gauge, undetected at the time the data were recorded. These irregularities 
make it hard to draw firm conclusions from the figure, but it looks as though for 5CB 
the lines of constant S2 are diverging slightly from one another at  pressures of around 
2 kbar. 

Wallis and Roy [4] have provided polynomial expressions for the N.M.R. line- 
width, A H ,  in 6CB and 7CB as a function of Tand p .  From these it should be possible 
to calculate curves to superimpose for comparison purposes on figure 2; the necesary 
assumption that A H  and X are proportional to one another has been verified to within 
1 per cent for 6CB at atmospheric pressure in separate experiments by Roy [12]. 
Unfortunately, the polynomial proves to be unreliable at the relatively low pressures 
in which we are most interested. We have referred instead to the detailed results which 
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Figure 2. 6CB: values of C, deduced from observations on the Freedericksz transition, plotted 
against A T  + , atmospheric pressure; 0 , p  = 0.20 kbar; 0, p = 0.50 kbar. The displace- 
ment of the open circles relative to the two other sets of points is attributed to an error 
in the identification of TN, at 0.20 kbar. 
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Figure 3.  5CB: values of C plotted against AT: x , atmospheric pressure; 0 , p  = 0.694.71 kbar; 
0, p = 1.01-1.05 kbar; +, p = 1.52-136 kbar; A, p = 2.03-2.07 kbar. 
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12 P. L. Sherrell et al. 

Roy [12] has recorded, but the fact that he collected data while varyingp at  constant 
T while we did the reverse introduces too many ambiguities into the comparison to 
make it useful. Comparison of the data in figure 3 with Horn's refractive index 
measurements for 5CB [2] is equally unrewarding. 

3.4. Compressibility 
To go with each value of X we have, of course, a value of SZ deduced from no and 

v with the aid of equation (4). The results for 6CB are plotted against AT in figure 4. 
Here we have chosen to correct the set of readings corresponding to a pressure of 
0.20 kbar for drift in the pressure gauge, using figure 2 as a guide. The correction 
brings these readings into line with the other two sets, and collectively they imply that 
for 6CB 

effectively independent of AT. The exponent defined by equation (1) is therefore 
V<'(8VN/8p)r N SZP'(8SZ/dp),, = -0.018 kbar-', (12) 

= TN;'(dTN,/dp)/R-'(aSZ/dp)A,=o 1: 7 f 1 .  (13) 
The estimated limits of error attached to this figure reflect the fact that SZ is more 
sensitive than X is to errors in (8no/8p)AT. For 5CB we estimate in the same way that 

y 21 8.5 f 1.5; 

this may be compared with the figure of 6 quoted for y in 5CB by Horn and Faber 

Measurements of refractive index made just above TN, suggest that in the isotropic 

(14) 

[lo]. 

phase of 6CB 

with similar results for the other cyanobiphenyls. 

V-'(dV//la~),=~~, = 0.020( f 0.002) kbar-', (1 5) 

3.0C 

C 

2.95 

0 5 10 15 20 
A T /  K 

Figure 4. 6CB: values of C l  plotted against AT: + , atmospheric pressure; 0, p = 0.20 kbar; 
0 ,  p = 0.50 kbar. A correction has been applied for the suspected error in TN, at 
0.20 kbar . 
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Efect of compression on Frank constants 13 

4. Experimental results: stiffness constants 
4.1. The bend constant for 6CB 

In figure 5 we present our results for the critical field at which the Freedericksz 
transition begins in the manner suggested in the Introduction, i.e. by plotting (Bi/R) 
versus X. It should be noted that the errors which may have crept into some of our 
estimates of AT as a result of pressure gauge problems are of no relevance here. They 
affect our evaluation of no a little, but by too little to have any significant effect upon 
either R or X, while the value of B, generated by our fitting procedure is essentially 
independent of no. Thus it makes no visible difference in figure 5 to the points for 6CB 
at 0.2 kbar whether the AT values are corrected by 1 K (see $3.3) or not. 

Of the four sets of points in figure 5 ,  three were obtained using the single 6CB 
specimen for which C was plotted against AT in figure 2. The fourth set represents the 

t 0.010 

(Y ' d  

+ F + O  

x 0' 
N O  xca 
Lo 0.006 x +  O 

O *  

0.004 
I I I I I 

0.20 025 0.30 0 35 0.40 

Figure 5. 6CB: (Bi/R) plotted against 2: x , previous experiments at atmospheric pressure; 
+, atmospheric pressure; 0, p = 0.20 kbar; 0 ,  p = 0.50 kbar. 

t 0.012 

N 

\ + I  
N 
Q0 Go.oo* I t 

&++, 0 0  

0.006 L, o x  

025 030 0.35 0.40 0-004 

E 
Figure 6 .  5CB: (&in) plotted against Z: x , atmospheric pressure; 0, p = 0.69471 kbar; 0, 

p = 1.01-1.05kbar; +, p = 1.52-1.56kbar;A, p = 2.03-2.07kbar. 
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14 P. L. Sherrell et al. 

results of previous experiments on 6CB at atmospheric pressure [9], normalized to 
reflect the fact that in that previous work L was slightly different. The agreement with 
previous work is evidently very close, but in fact all four sets of points in the figure 
lie quite close to one another. Between 0 and 0.5 kbar, T N , ( p )  for 6CB rises by 6.1 per 
cent (see the table) and according to the theories outlined in the Introduction (B$) 
should rise by the same amount. Such an increase should be sufficient to show up quite 
clearly in figure 5 but in fact there is no sign of it: if anything, the points for 0.2 and 
0.5 kbar lie below the atmospheric pressure points. 

4.2. The bend constant for  5CB 
Figure 6 is a plot of (E$Cl) versus C for the sequence of runs on a single specimen 

of 5CB, of fixed L, which provided the data for figure 3. Despite some irregularity in 
the set of results obtained above 2 kbar, the points provide clear evidence for an 
increase of (B;/Q), and therefore of K 3 ,  on compression at constant Z. The rate of 
increase, and the way in which it seems to vary with Z (i.e. with A T )  is indicated in 
figure 7. A dotted line in this figure represents the rate of increase to be expected at 
low pressures in 5CB if the theories outlined in the Introduction are to be believed. 

0 '  I I 
I I 

0.25 0.30 035 0.40 
L 

Figure 7. 5CB: the relative rate of increase in (B i /Q) ,  and hence in K , ,  on compression at 
constant Z. 

4.3. The splay constant 
The ratio between K ,  and K3 is given by the parameter K referred to in the 

Introduction. Results for the specimens of 6CB and 5CB to which figures 5 and 6 
respectively refer are plotted against C in figures 8 and 9. The curves drawn in these 
figures represent the best available values for the ratio at atmospheric pressure, taken 
from the work of Bradshaw et al. [9]. 

Aberrant results for K are not uncommon, and points which are far from the curve, 
in figure 9 especially, should be ignored. Apart from these, the points seem to follow 
the atmospheric pressure curves in both figures, but are, on average, about 3 per cent 
high for 6CB and 5 per cent high for 5CB. One interpretation for such discrepancies 
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EfSect of compression on Frunk constants 15 

Figure 8. 6CB: the ratio K, /K3  versus C: x , previous experiments at atmospheric pressure; + , 
atmospheric pressure; 0 , p  = 0.20 kbar; 0 , p  = 0.50 kbar. The curve is taken from results 
quoted by Bradshaw et al. [9]. 

A A  

. .  

L 

Figure 9. 5CB: the ratio K , / K 3  versus C: x , atmospheric pressure; 0, p = 0.694.71 kbar; 0,  
p = 1.01-1.05 kbar; +, p = 1.52-1.56 kbar; A, p = 2.03-2.07 kbar. The curve is taken 
from results quoted by Bradshaw et al. [9]. 

is that the magnetic field was not quite parallel to the nematic layers; according to 
Bunning et al. [8] an error in alignment of only 0.004radians (4") increases the 
apparent value of K , / K ,  by 4 per cent. Such misalignment would have tended to 
decrease the apparent values of B,, by about 1 per cent. However, during the two 
sequences of experiments upon which we have relied in plotting figures 2-9 the 
apparatus remained undisturbed, so within each sequence the effects of misalignment 
should have been systematic and therefore essentially irrelevant to our argument. 
Misalignment does not affect the apparent values of v. 
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16 P. L. Sherrell et al. 

Figures 8 and 9 seem to provide no evidence that K , / K 3  changes on compression 
at constant X. Provisionally, therefore, our conclusions about the effect of com- 
pression on K3 apply equally to K I .  

5. Discussion 
We start this section by amplifying remarks in the Introduction about the theories 

In its simplest version the Maier-Saupe theory leads to an expression for the molar 
of Maier and Saupe and of Faber. 

Gibbs free energy of the nematic phase of the form 

GN(VN) = GI(VN) - CS: + TAS,,,, (16) 

where GI is the free energy of the isotropic phase and AS,,, (a function of S2 only) is 
the amount by which the entropy of misalignment in the isotropic phase exceeds that 
in the nematic phase. The term - CS; represents a reduction in the internal energy 
of the nematic, attributed to anisotropy in the intermolecular van der Waals potential. 
The theory evidently predicts a transition temperature 

TNI = (G,(6)  - f cs;)/Asrn 

= (+(a2GI/8V2)AV2 + CS;)/AS,,, 

= ((AV2/2f11V) + C$)/AS,, (17) 

where A V  = (6 - VN) and PI is the isothermal compressibility of the isotropic 
phase. Equation (17) should be valid at any pressure. The term in AV2 turns out to 
be negligible in practice, so equation (1 7) reduces to 

TNI II CS;/AS,,,. (18) 

But the equilibrium value of S, is a unique function of (T/C)-this follows from the 
condition that the right-hand side of equation (16) must be a minimum with respect 
to variations of S, at constant VN-which means, in view of equation (17), that it takes 
a unique value on the clearing curve. Hence at all points on this curve 

TNI a C.  (19) 

Any pressure dependence of TNI must therefore be attributed to a volume dependence 
of the interaction coefficient C. It follows from the discussion of the Frank constants 
given by Saupe [I31 and Nehring and Saupe [I41 that these must vary with pressure 
or volume in the same fashion. 

Faber [6] starts from the position that no mean field theory of the Maier-Saupe 
type can be valid, because the correlations of orientation between adjacent molecules 
are too strong. The nematic is pictured instead as a medium in which the molecules 
would be perfectly aligned, but for the thermal excitation of a spectrum of 2N 
distortion modes involving splay, twist and bend in the director field. This picture 
suggests that 

In (S,(O)/S,(T)) a wtm, (20) 

where K is an appropriate average of K , ,  K ,  and K, ,  and where S2(0) is unity. It also 
suggests [I51 that at constant volume 

K ( T )  = K(O)f(S,(T)/S,(O)), (21) 
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Effect of compression on Frank constants 17 

where the function f describes a reduction in the stiffness of the nematic due to the 
misalignment of its molecules at temperatures above zero. The order parameter S,( T) 
is to be thought of as determined by a self-consistency condition involving equations 
(20) and (21). 

The theory is not expected to be reliable close to the clearing curve, but com- 
parison with results generated for lattice models by computer simulation suggests that 
it should be useful at low temperatures, say when S, > 0.5. Evidently it implies that 
along any line in the phase diagram for which Z (> 0.3, say) is constant, 

K a T/VAl3. 
It follows that at low pressures 

Kpl(aK/ap)Z = (TNl/T)(T,-'(aTNl/ap),) - T-'(aA/ap)Z - (3VN)-'(avN/ap)X. 

The factor (TNI/T) differs from unity by 5 per cent or less, and the final term on the 
right-hand side of equation (22)  constitutes another correction of only about 5 per 
cent. For 6CB, in which lines of constant E run parallel to the clearing curve, the 
middle term should vanish and for 5CB it should be small. Hence we could not hope 
to distinguish between this prediction and one based upon Maier-Saupe theory, viz. 

K- '(WaP), = T,; TN, /dP>X. (23) 
Figure 7 suggests that in 5CB the effect of compression on K3 is about half as big as 
equation (23) would suggest, at any rate for temperatures some way below TNI . How 
might the theories be modified so as to remove this discrepancy? 

Many empirical modifications of Maier-Saupe theory have been put forward, 
involving additional terms in the basic equation for GN (V,). They have been used to 
explain why at atmospheric pressure the order parameter S, does not always vary with 
temperature in the way that Maier-Saupe theory predicts, and in particular to explain 
why S, at T = TNl is often significantly different from the Maier-Saupe value of 
about 0.43; in 5CB, for example, it is known [I61 that S, at T = TNI is only 0.39. These 
modifications have been reviewed by Horn and Faber [lo], who attempted (without 
success) to find one that could be fitted to Horn's data [2] for 5CB over the whole 
range of temperature and pressure which he investigated. As Horn and Faber showed, 
some of these modifications imply a distinction between the ys of equations ( I )  and 
(2); they admit the possibility that if 

T,, K VCy, K, a C K VcY', (24) 
then y' may be less than y by a factor that could in principle be only +. 

As for the continuum theory of Faber, this too seems unable, in its simplest form, 
to match exactly the temperature dependence of S, at atmospheric pressure for 5CB 
[8]; discrepancies exist not only near TNI, where the theory is known to fail, but also 
at temperatures such that S, > 0.5, where it describes the behaviour of artificial 
nematics, as explored by computer simulation techniques, rather well. It looks as 
though [17] we need for 5CB to adopt a value for S,(O) in equations (20) and (21) 
which is less than unity, and at the same time to allow for thermal excitation of less 
than 2Nmodes. Modified in this way continuum theory could be consistent with a less 
rapid variation of K along lines of constant S2 than equation (22) would require, 
provided that both S,(O) and K(0) could be supposed to increase on compression. 
Such a supposition would not seem implausible on physical grounds. 
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18 P. L. Sherrell et al. 

Alternative explanations for what we have observed using 5CB are therefore 
available. But why should the behaviour of 6CB be different? The two nematics are 
close enough in structure for observable properties such as X, A x  and N.M.R. 
linewidth to vary with temperature at  atmospheric pressure in very much the same 
way for both [I 1,121 and although we have noted, in 53.3, one difference in their 
behaviour under pressure-the fact that S, is constant along the clearing curve for 
6CB but decreases slowly for 5CB-it seems a rather subtle difference of no obvious 
relevance to our principal results. The rhetorical question at  the start of this para- 
graph must remain unanswered. 

Appendix 
The biaxiality correction 

Molecules of 5CB and 6CB do not have rotational symmetry about their long 
axes. Thus if we define the orientation of the director with respect to (x, y ,  z )  axes set 
in an individual molecule by Euler angles (a, B, y) and define an order parameter in the 
usual way by means of an ensemble average, 

s 2  = 5(3C0s2B - I), 

we can assume (given that the nematic displays no observable biaxiality in the bulk) 
that averages over a vanish but we cannot make the same assumption about averages 
over y. The Saupe ordering matrix, of which 5’’ (= Szz) is one component, is defined 
in such a way that 

Sx, - SYy = +( 3 sin’ Bcos’ y), 

and the biaxiality ratio is then 

In [ 1 11, which may be consulted for further details, it was labelled B; we have changed 
our notation to avoid confusion with the magnetic field. 

It is probable that the magnitude of b has some effect on the ratio ( K , / K 3 ) ,  and 
the apparent insensitivity of that ratio to compression along lines of constant S2 
suggests a similar insensitivity on the part of 6.  That argument is too qualitative, 
however, to be relied upon. We prefer to note that for 5CB-and in this respect 6CB 
is probably much the same [I  11-4 is only about 0.15 or so. Changes in b should be 
negligible in the context of the present paper provided that 

a ( w a P ) s 2  
( 1  + ab) “* 

This inequality corresponds roughly to 

( d ( s i n i y s ’  y ) (sin’ j cos’ y ) 1% 50 VN 

It would require a remarkable sensitivity to compression of averages over y for it to 
fail. 
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